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Abstract
This paper describes the system developed by the Uni-

versity of Birmingham for the SLaTE CALL Shared Task on
grammatical and linguistic assessment of English spoken by
German-speaking Swiss teenagers. Our work focused on au-
tomatic speech recognition (ASR) but we also improved the
text-processing component of the system. Several approaches
to training a DNN-HMM ASR system using the AMI and the
German PF-STAR corpus, plus a limited amount of Shared Task
data, are described. In cross-validation evaluations on the ini-
tial Shared Task data, our final ASR system achieved a word-
error-rate (WER) of 9.27%, compared with 14% for the official
baseline Shared Task DNN-HMM system. For text processing
we expanded the baseline template-based grammar to include
additional correct response patterns from the original Shared
Task transcriptions. Finally, we fused the outputs of several sys-
tems at the text processing stage using linear logistic regression.
Our best single and fused systems submitted to the challenge
achieved ‘D’ scores of 4.71 and 4.766, respectively, on the final
test set.
Index Terms: CALL, shared task, automatic speech recogni-
tion, text processing

1. Introduction
Since the 1980s, shared tasks have been a major factor in the
development of many areas of speech and language technol-
ogy, but there has not previously been such a task for Com-
puter Assisted Language Learning (CALL). The 2017 SLaTE
CALL Shared Task [1] was led by the University of Geneva
with support from the University of Birmingham and Radboud
University using recordings of English responses from German-
speaking Swiss teenagers interacting with the CALL-SLT sys-
tem [2]. A development set, ST-DEV, of 5,264 recordings, to-
gether with a true transcription, automatic speech recognition
(ASR) outputs from a commercial and baseline DNN-HMM
system, and a human judgment of grammatical and semantic
correctness for each utterance, was released in July 2016. This
set was reduced to 5,222 utterances in February 2017. This en-
abled participating laboratories to develop systems in time for
the release of the 996 utterance test set, ST-TST, in March 2017.

This paper describes the three systems that we submitted
to the 2017 SLaTE CALL Shared Task. Each consists of two
components, automatic speech recognition (ASR) and text pro-
cessing (TP). Our ASR system was developed using the Kaldi
toolkit [3] and builds on the CALL Shared Task baseline ASR
system. For ASR training, we replaced the WSJCAM0 corpus
of read native English speech [4], that was used to train the
baseline system, with a portion of the AMI corpus of unscripted
speech [5] and the German PF-STAR corpus of German chil-
dren reading English [6]. This plus 90% of ST-DEV was used
for pre-training and training, followed by a final phase of train-

ing using only ST-DEV. The optimum amount of AMI training
data (to balance with ST-DEV) and various parameters of the
ASR system were determined empirically in cross-validation
experiments on ST-DEV. For text processing we expanded the
baseline grammar to include word sequence patterns from ST-
DEV that were judged correct but were missing from the origi-
nal grammar.

For the final evaluation on ST-TST we submitted results
from three systems:

• Submission 1 consists of our best ASR system (9.27%
WER average over cross-validation experiments on ST-
DEV) trained on the whole of ST-DEV, plus the ex-
panded TP. The optimal parameters of ASR for Submis-
sion 1 were estimated over 10-fold cross-validation ex-
periments.

• Submission 2 is the result of fusing the outputs of six
separate systems using linear logistic regression [7]. The
systems all use our expanded TP with four variants of the
ASR from Submission 1, the Kaldi baseline ASR and
Nuance ASR.

• Submission 3 combines Nuance ASR with the expanded
TP.

On ST-TST Submission 1 achieved a WER of 15.63% and Sub-
mission 1, 2 and 3 achieved D scores of 4.71, 4.766 and 2.533,
respectively.

The rest of the paper is organised as follows. In section 2,
we provide details of the spoken CALL shared task and the brief
structure of our system. Sections 3 and 4 describe the ASR and
text processing parts of our system, respectively. Finally, we
present our conclusions in section 5.

2. Spoken CALL Shared Task
2.1. Introduction to the Shared Task

The shared task is based on data collected from CALL-SLT [8,
2], a speech-enabled online tool which has been under develop-
ment at the University of Geneva since 2009. The system helps
young Swiss German teenagers practise skills in English con-
versation. The items of data are prompt-response pairs, where
the prompt is a piece of German text and the response is an ut-
terance spoken in English and recorded as an audio file. The
challenge of the task is to label pairs as “accept” or “reject”,
accepting responses which are grammatically and linguistically
correct and rejecting those incorrect either in grammar or mean-
ing according to the judgments of a panel of human listeners [1].

There are two versions of the task: a speech-processing ver-
sion and a text-processing version [1, 9]. The aim of the two
versions are the same, but they have different items provided
as system input. In the speech-processing version of the CALL
shared task, each item consists of an identifier, a German text



prompt and an audio file containing an English language re-
sponse. For the text-processing version, there is an extra text
string representing the automatic speech recognition result on
the audio file, which is obtained from either the official base-
line Kaldi ASR system or the Nuance ASR used in the origi-
nal CALL-SLT system. This paper is mainly concerned with
the speech-processing version but we also improve the text-
processing version of the task.

2.2. Scoring Metric

All the items are annotated by three native English speakers ac-
cording to their linguistic correctness and their meaning (these
are referred to as the language and meaning “gold standard”
judgments). For linguistic correctness, both vocabulary and
grammar are judged as correct or incorrect. The annotators also
judge whether the answer is meaningful or not in the context of
the provided prompt, labelling an utterance as “sense” or “non-
sense”. It is worse for the system to accept a “nonsense” sen-
tence than it is to accept one which is correct in terms of mean-
ing. Comparing the system’s judgments with the language and
meaning gold standards, each response falls into one of the five
categories described in Table 1.

Table 1: Categories of Results

English Meaning Judgment Category

3 3 Accept Correct Accept (CA)
3 3 Reject False Reject (FR)
7 3

Reject Correct Reject (CR)3 7
7 7

7 3 Accept Plain False Accept (PFA)
3 7 Accept Gross False Accept (GFA)
7 7

Let CR, CA, FR, PFA and GFA denote the number of utter-
ances in the corresponding categories as given in Table 1. The
evaluation of the overall quality of the systems in the Shared
Task is performed using a differential response score, D, which
is defined [1] as the ratio of the reject rate on incorrect answers
to the reject rate on correct utterances, i.e.,

D =
CR/(CR+ FA)

FR/(FR+ CA)
=
CR(FR+ CA)

FR(CR+ FA)
, (1)

where the false acceptance (FA) is defined as FA = PFA +
k · GFA, with k being a weighting factor that causes gross
false accepts to have a more prominent effect. In the current
evaluation this is set to 3.

2.3. Training and Test Corpus

The training (ST-DEV) and test (ST-TST) sets of the Shared
Task (ST) were released in July 2016 and March 2017, respec-
tively. The training set contains 5,222 utterances (approx. 4.8
hours of recordings) and the test set contains 996 utterances (ap-
prox. 0.89 hours of recordings). The speakers are male and
female German-speaking Swiss students ranging in age from
12 to 15 years. No specific information about speakers was
released for the Shared Task, so we did not know which utter-
ances are spoken by the same speaker or whether the speaker for
a particular utterance is male or female. This has implications

for ASR development because Kaldi can exploit this informa-
tion if it is available. In our cross-validation experiments, the
released training set ST-DEV was separated into training data
and development data at the ratio of 9:1.

2.4. System Structure

The architecture of an automatic system used for the Shared
Task is depicted in Figure 1. The system consists of two parts.
The first is an ASR system that converts a given audio record-
ing into a text. The second part is a text processor which takes
the transcribed audio and makes a judgment of whether the ut-
terance is accepted or rejected according to the language and
meaning. A baseline ASR system built using Kaldi and a base-
line text processing system were provided by the organisers of
the challenge on the website [9], and we will introduce these
separately in sections 3.1 and 4.1.

Figure 1: Structure of the system.

3. Automatic Speech Recognition
3.1. Official Baseline System

The provided baseline ASR system is a hybrid deep neural
network – hidden Markov model (DNN-HMM) built using
Kaldi [3]. The Shared Task data used to develop the base-
line ASR is a super-set of ST-DEV, comprising recordings of
5,500 utterances. This corpus is referred to as ST-BASE. Thus
ST-BASE includes ST-DEV plus some utterances that were
not subsequently released. The baseline Kaldi ASR system is
trained on about 18.93 hours of recordings from WSJCAM0 [4]
and 90% of ST-BASE. The remaining 10% of ST-BASE is used
for testing.

A speech signal frame is represented using 13-dimensional
MFCCs with a context of 15 frames (i.e., 7 frames before and
after). A neural network with 4 hidden layers and 1024 neurons
for each layer was used. The output layer is a softmax layer
and each node of this layer represents the posterior probabil-
ity of the context-dependent HMM states. The initial training
of the DNN-HMM is performed using an alignment obtained
from a triphone GMM-HMM system, which was trained using
an alignment obtained from a monophone GMM-HMM system.
For GMM-HMM systems, a speech signal frame was repre-
sented using 13-dimensional MFCCs with delta and delta-delta
coefficients appended, forming a 39-dimensional feature vec-
tor. After training the DNN model, an adaptation is applied by
fine-tuning the network using only the ST data. The language
model (LM) is a bigram model trained on the reference tran-
scription of the ST data. In cross-validation evaluations, this
system achieved an average WER of 14.03%.

3.2. Developed Systems

This section describes the development of ASR systems that
formed part of our submission to the Shared Task challenge.
All systems were developed using Kaldi. The developed DNN-
HMM systems used similar configuration as the official baseline
ASR system except of the following differences. We used 13-



dimensional MFCCs with context of 11 frames (i.e.,±5 frames)
in most experiments – the use of a slightly smaller context than
the official baseline ASR was accidental and was considered to
have little effect on results. In addition, some DNN-HMM ex-
periments (see section 3.2.2) were also performed using Mel-
scaled filter-bank energies with the same 11 frames context.
The neural network with 6 hidden layers and 1024 neurons for
each layer was used. In all our experiments, a trigram language
model trained with ST training data was used.

3.2.1. Training Data Selection

The first issue we explored was the effect of using different
training data on ASR performance. The results of these exper-
iments for monophone and triphone GMM-HMM systems and
two DNN-HMM systems are shown in Table 2. In the table,
“MonoPhone”, “TriPhone” and “DNN” indicate systems that
were pre-trained and trained on the complete training set.

In all of these experiments we also applied the fine-tuning
strategy used in the baseline system, re-training the DNN model
with only the ST training data after initial pre-training and train-
ing with the complete training set. “DNN.reTrain” corresponds
to the same DNN-HMM system as “DNN” but after additional
training using just the ST data.

Our first ASR system, Sys1 in Table 2, used only ST train-
ing data.

The WSJCAM0 corpus comprises recordings of read
speech from adults who are native speakers of English. Each
of these factors is inconsistent with the Shared Task data.
Therefore, as an alternative, we replaced WSJCAM0 with the
AMI [5] corpus in our training data. The AMI corpus consists
of 100 hours of recordings of unscripted speech from adults par-
ticipating in simulated meetings. Also, although the recordings
are in English, English was not the first language of many of the
participants. The AMI corpus was recorded using a wide range
of devices, including close-talking and far-field microphone, in-
dividual and room-view video cameras. We used 77.3 hours of
IHM (Individual Headset Microphone) data from the corpus in
our experiments.

Although the properties of the AMI corpus are closer to
those of the Shared Task, there is still a miss-match between
the ages of the speakers. A model trained with AMI data will
be biased towards adults’ speech and will not necessarily rep-
resent the speech characteristics of young teenagers. For this
reason we explored adding different amounts of AMI data to
ST training data: 100% (Sys2), 50% (Sys3) and 20% (Sys4).
The results are shown in Table 2.

In a further effort to incorporate more of the characteristics
of the ST speakers in our training set, we also added a German
English corpus, the PF-STAR corpus of recordings of read En-
glish speech spoken by German children [6], to the training set.
The complete PF-STAR corpus contains more than 60 hours of
speech, including read and spontaneous native language speech
in British English, German and Swedish and non-native read
English from German, Italian and Swedish children, aged be-
tween 4 and 15. The German part of the PF-STAR corpus (PSG)
was collected from German children and includes native Ger-
man recordings and non-native English recordings. The non-
native English speech from PSG is used in our experiments. It
contains about 3.4 hours of recordings of read speech collected
from 57 German children who are aged from 10 to 15. We built
a DNN system with ST, AMI and PSG training data using the
same methods as those described above. The results are shown
as Sys5 in Table 2.

Table 2: %WER of development set using models trained on
different training data.

WER (%) Sys1 Sys2 Sys3 Sys4 Sys5

MonoPhone 31.78 57.95 44.24 41.08 35.69
TriPhone 17.59 27.68 22.55 21.29 20.29

DNN 19.50 22.69 18.85 15.76 19.71
DNN.reTrain - 14.61 13.61 13.07 14.97
Sys1: only ST training data
Sys2: ST training data plus all the AMI data
Sys3: ST training data plus 50% of the AMI data
Sys4: ST training data plus 20% of the AMI data
Sys5: ST training data plus PSG and 20% of the AMI data

From the results in Table 2, we see that adding data to the
training set can improve the performance of the DNN model (al-
though it may have disadvantages for the GMM-HMM model).
Including 20% of AMI in the training set results in a greater
advantage than adding all of the AMI data. The retrained DNN
model for Sys2 has 14.61% WER which is better than that for
Sys1 with about 25% relative improvement. Sys4 achieves a
WER of 13.07%, which corresponds to a 33% improvement
relative to Sys1. We expected that Sys5 would give the best
performance, but it only outperforms Sys4 in the case of the
GMM-HMM models and does not show an advantage for the
DNN-HMM models.

3.2.2. Adaptation

This section presents application of feature normalisation and
adaptation, specifically, Cepstral Mean Normalisation (CMN)
and feature-space maximum likelihood linear regression (fM-
LLR). In Kaldi, each utterance is associated with a speaker
label and consequently CMN and fMLLR are performed per-
speaker. However, the speaker label information is not available
in ST dataset. As such, in our Sys4 and Sys5, we used a single
speaker-id for all utterances, which resulted in using a globally
calculated statistics for CMN and fMLLR. In Sys6 and Sys7,
we explored the application of CMN and fMLLR per-utterance
basis, i.e., each utterance was considered to be from a different
speaker. This was implemented in Kaldi by making the speaker-
ids identical to the utterance-ids. In the case of fMLLR [10], the
transformation was performed on dimensionality-reduced fea-
tures. These features were obtained by first applying LDA on
the 143-dimensional vector of MFCCs in context to decorrelate
and reduce its dimension to 40-dimensional features and then
further decorrelating using maximum likelihood linear trans-
form (MLLT). In addition to the use of MFCCs, experiments
were also performed using Mel-scaled filter-bank energies.

Experimental results for systems from 4 to 7 are presented
in Table 3. It can be seen that the use of features transformed us-
ing fMLLR provides considerable performance improvements,
e.g., for Sys4, from 15.76% to 13.82% and further to 10.77%
after retraining. The use of per-utterance fMLLR transforms, as
in Sys6 and Sys7, provided further large improvements over the
use of a single global transform. The best system, using per-
utterance fMLLR and the training set containing ST and 20%
of AMI, achieved 8.90% WER.

3.3. Final ASR Submitted to the Challenge

In our experimental evaluations before the submission, Sys7
performed slightly better than Sys6. As such, our submissions



Table 3: %WER of development set using models trained with
mixed data (ST, AMI and PSG), the first two columns are for ST
with one global speaker-id and the last two columns are for ST
with different speaker-ids.

WER (%) Sys4 Sys5 Sys6 Sys7

DNN (fbank) 17.41 21.83 14.58 15.08
DNN (mfcc) 15.76 19.71 14.00 13.50
DNN (fmllr) 13.82 17.49 10.70 10.27

DNN.reTrain (fbank) 13.68 17.88 12.50 12.28
DNN.reTrain (mfcc) 13.07 14.97 10.95 11.78
DNN.reTrain (fmllr) 10.77 11.99 8.90 9.16
Sys4: ST training data plus 20% of the AMI data, one
speaker-id for ST.
Sys5: ST training data plus PSG and 20% of the AMI data,
one speaker-id for ST.
Sys6: ST training data plus 20% of the AMI data, different
speaker-ids for ST.
Sys7: ST training data plus PSG and 20% of the AMI data,
different speaker-ids for ST.

were based on Sys7. However, after the submission, we have
found a minor mistake in data arrangement, which when cor-
rected resulted in Sys6 actually performing slightly better than
Sys7. Note that all results presented in this paper are after the
correction was made.

The final system we used for the submission was built by
following the procedure of Sys7 but using all 100% of the ST-
DEV data for training the system (instead of only 90% as used
in cross-validation experiments presented in the previous sec-
tion). This DNN-HMM system used fMLLR-transformed fea-
tures and was trained first using all the ST-DEV data plus 20%
of AMI and PSG data and then further trained using only the
ST-DEV data. The values for language model weight (lmwt),
acoustic model weight (acwt) and insertion penalty (p) parame-
ters were set based on best performance in our cross-validation
experiments.

4. Text Processing
4.1. Official Baseline System

The official baseline text processing system, provided by the ST
challenge organisers on their website [9], is based on using a
reference template-based grammar. This grammar is generated
based on a set of templates of responses for each prompt [11].
The baseline reference grammar includes 565 prompt-units,
each prompt-unit consists of a German prompt and a set of pos-
sible responses to it. Since a German text prompt is provided
for each item in the ST, we could compare the prompt with the
prompt-units in the reference grammar and obtain a list of possi-
ble valid responses. If an ASR transcription of a given utterance
was in the response list, then this utterance would be labelled as
“accept”, otherwise, it would be labelled as “reject”.

4.2. Developed System

The main part of our text processing system is based on the
baseline system. We expanded the reference grammar using the
method described in [11], trying to make it as complete as pos-
sible. Apart from this, a pre-processing of the ASR output was
included in order to deal with words due to hesitation and word
repetitions, which are difficult to be handled by the grammar.
An extra fusion back-end, which could take advantage of sev-

eral ASR outputs, was used in our Submission 2.

4.2.1. Expanded Reference Grammar

We found that when using the baseline text processing gram-
mar, there were a large number of false rejections on responses
which seemed correct. This led us to realise that the set of
responses for some prompts was not sufficient in the baseline
grammar. In order to create a more complete grammar, we input
the true transcriptions of speech utterances into the text process-
ing. Theoretically, those responses which were labelled as “cor-
rect” based on the gold standard should have all been accepted.
However, we have found a considerable number of rejections
and these could only have been due to transcriptions not being
covered by the grammar. We have also found that a few gold
standard judgments were actually not correct, thus, some false
rejections were actually rejected correctly.

We went through all the false rejections and added the cor-
rect transcriptions that had a correct human gold standard judg-
ments to the grammar. We then applied text processing to the
true transcriptions with the updated grammar, and went through
all the false rejections and false acceptances again and updated
the grammar accordingly. This procedure was repeated a few
times, at each step taking care that the responses added to the
grammar did not cause a large increase of false acceptances.
After this, we used the actual ASR output as input to the text
processing and applied the same grammar updating procedure.

We also considered adding some commonly occurring in-
correct ASR outputs into the grammar in order to reduce the
number of false rejections further. One such example of incor-
rect ASR output was that “london eye” was recognised as “lon-
don a” – such a minor error could be understood easily in real
life. We considered adding these texts into the grammar, but we
did not do this in our final version of grammar because of a high
possibility of increasing the number of false acceptances.

4.2.2. Pre-processing

In providing a response to a given prompt, subjects may of-
ten hesitate, be uncertain or want to modify/correct their an-
swer. These result in two main issues when assessing responses,
which are difficult to remedy directly in the reference gram-
mar. Hesitations and uncertainty may often result in insertion of
words like “um” and “uh” in speech and these may appear at
any place in the response. We have also noticed that responses
sometimes started with the word “hello”. A sentence should
not be rejected just because it contains such words. However,
it is difficult to include these words in the reference grammar
due to their possibly arbitrary location in the sentence. Thus,
we removed these types of words from the ASR output before
it was passed to the main text processing.

The other issue is repetition of words or modifica-
tion/correction of the response. This is also not suitable to be
handled by the reference grammar. We assumed that children
tend to correct their response during the repetition, so the lat-
ter part of the repetition would be better. Thus, when repetition
happens, we exclude the former part.

The above two steps of pre-processing provided a consider-
able performance improvement. However, there are still a few
further issues which we have not tackled yet in our current sys-
tem. One is that there are many false-start words in speech, for
instance, “i want fa five tickets”, “brown trou trousers”. The
reason why false-start words occur is similar to repetition, but
they are harder to be excluded from the texts.



4.3. Fusion

We chose the best ASR system and the best parameters accord-
ing to cross-validation experiments on ST-DEV. However, the
values of the best parameters were inconsistent across differ-
ent cross-validation partitions. Therefore we were not confident
that the same parameters would also be optimal for ST-TST.
Hence we built multiple systems, each with different ASR sys-
tem parameters but the same expanded TP, and fused their out-
puts. We employed the weighted summation fusion approach
with parameters trained on the development set to take advan-
tage of the multiple systems.

The final output of the system is “accept” or “reject”, which
is a 2-class classification. For fusion we transferred the judg-
ments into 2-class scores. Let class c1 and c2 represent “accept”
and “reject”, respectively. If the judgment for item x is “ac-
cept”, then the score should be scorec1(x) = 1, scorec2(x) =
0, and if it is “reject”, then the score should be scorec1(x) =
0, scorec2(x) = 1. In our experiments, we use the log score:

scorec(x)← log(scorec(x) + ε). (2)

Let there be K input systems where the ith system outputs the
log score vector scorec,i(X). Then the fused score scorec(X)
is given by:

scorec(X) =

K∑
i=1

wc,i · scorec,i(X). (3)

The weight, wc,i can be trained on the training data. After ob-
taining the fused score, we could assign the class for item x by:

class(x) = argmax
c
scorec(x).

Fusion was achieved using the linear logistic regression
based fusion module in the FoCal toolkit [7].

4.4. Official Submissions

For the final evaluation on ST-TST data, we submitted results
from three systems. These are summarised below together with
their achieved D scores:

Submission 1 (system JJJ on the official SLaTE CALL
Shared Task results table [9]) consisted of our best single ASR
system and our expanded TP system. The ASR system used
values for parameters (lmwt, acwt and p) that were found opti-
mal on 10-fold cross-validation experiments. This submission
achieved D score of 4.710.

Submission 2 (KKK) was the result obtained by fusing
the outputs of six separate systems using linear logistic regres-
sion. The systems all used our expanded TP with four vari-
ants of the ASR from Submission 1 (with different parameter
setup), the Kaldi baseline ASR and Nuance ASR. This submis-
sion achieved D score of 4.766.

Submission 3 (LLL) combined baseline Nuance ASR sys-
tem with our expanded TP system. As such, this enables to eval-
uate the effect of our expanded TP. This submission achievedD
score of 2.533.

The above results show that fusing multiple systems pro-
vided only minor performance gain over the use of the single
best ASR system.

Further details of experimental results on the ST-DEV and
ST-TST data are presented in Table 4. In the table, %Corr and
%Acc denote percentage words correct and percentage accu-
racy, respectively – these were obtained using the HResults tool

from HTK [12] applied to the output of each ASR system. Re-
sults show that our developed system performed considerably
better on both datasets than baseline Nuance and Kaldi systems.
It can also be seen that performance is considerably lower for
all ASR systems on the ST-TST data compared with the ST-
DEV data, indicating that there may be a mismatch between
these two sets of data. The remaining lines in Table 4 present
the D scores obtained by using the baseline, DbaseTP , and our
expanded, DourTP , text processing. It can be seen that the use
of our expanded grammar in the text processing can potentially
have a large positive effect on the D score. The level of im-
provement seems to be proportional to the quality of the input
passed to the text processing. For instance, on the ST-TST, the
D score improved from 4.512 to 27.617 when using the true
transcription, while the improvement was only by 0.175 when
using Nuance ASR output (i.e., ASR whose speech recognition
performance was weak).

Table 4: Recognition performance (%Corr, %Acc) of ASR sys-
tems and D score for the development and test set when us-
ing true transcription and output of Nuance and Kaldi baseline
recognition systems and our Submission 1 ASR system.

True ASR system used
transc. Nuance Kaldi Our-S1

ST-DEV:
%Corr 100.00 74.40 88.38 92.93
%Acc 100.00 68.22 85.50 90.84
DbaseTP 4.231 1.950 2.278 2.779
DourTP 28.976 2.102 3.892 7.444

ST-TST:
%Corr 100.00 72.97 79.40 86.77
%Acc 100.00 66.84 74.08 84.37
DbaseTP 4.512 2.358 1.753 2.333
DourTP 27.617 2.533 2.379 4.710

5. Conclusion

This paper has described the University of Birmingham’s sub-
missions to the 2017 SLaTE CALL Shared Task challenge. We
submitted three systems, each comprising an ASR and TP com-
ponent. Our initial focus was ASR and our best DNN-HMM
system, developed with Kaldi using the AMI, PF-STAR (Ger-
man) and Shared Task corpora, achieves WERs of 9.16% and
15.63% on ST-DEV and ST-TST, respectively. We also im-
proved the TP component by expanding the reference grammar
and pre-processing ASR output. We submitted three systems to
the challenge. Submission 3 (“LLL” on the official Shared Task
results table [9]), combining the baseline Nuance ASR with our
expanded TP, achieves a D score of 2.533 on ST-TST. Sub-
mission 1 (“JJJ”), combining our best ASR and expanded TP,
achieves a D score of 4.71. Finally, Submission 2 (“KKK”) is
the fusion of six separate systems, each using our expanded TP
but with six different ASRs (baseline Nuance, baseline Kaldi
and four variants of our best ASR system). This submission
achieves the highest D score of 4.766 on ST-TST. Thus, best
performance is obtained by fusing multiple complete systems.
However, the performance improvement relative to the system
that uses the single best ASR system is marginal.
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