
Syntactic and semantic features for human like judgement in spoken CALL

Ahmed Magooda1, Diane Litman2

1University of Pittsburgh, PA, USA
2University of Pittsburgh, PA, USA

amagooda@cs.pitt.edu, litman@cs.pitt.edu

Abstract
Educational applications of Natural Language Processing

(NLP) and Automatic Speech Recognition (ASR) have included
providing learners with helpful and accurate feedback. In this
paper we present a system that takes a first step towards pro-
viding feedback during spoken Computer-Assisted Language
Learning (spokenCALL). We propose a machine learning based
approach that combines syntactic and semantic features in order
to accept or reject a textual response given a provided prompt.
Our approach was evaluated as part of the SpokenCALL shared
task, ranking third place among the submitted systems and out-
performing the provided baselines.
Index Terms: Natural Language Processing, Language model-
ing, Word embedding, Machine learning

1. Introduction
Any educational application has to deal with learner an-
swer/response variability, and spoken Computer-Assisted Lan-
guage Learning (spokenCALL) is no exception. For any sys-
tem question or prompt, it is expected that learners will not all
provide the exact same answer/response, and it is the system’s
responsibility to deal with this variability. To provide accurate
feedback, a system should thus be able to tolerate different lan-
guage aspects (e.g., word synonymy, paraphrasing) in learner
responses. The process of giving response feedback can be done
in multiple stages (e.g., accept/reject, highlight errors, propose
more accurate answers). In this paper we focus on the first stage
(accept/reject), since the first stage has to be the most accurate.
It is meaningless for a system to highlight errors or propose cor-
rections if the answer/response is correct to begin with, while it
can be less severe to just reject a wrong answer/response with-
out proposing any corrections.

In this context, this paper targets the task of providing ac-
cept/reject feedback for data collected from CALL-SLT [1], a
speech-enabled Computer-Assisted Language Learning appli-
cation that is based on prompts and associated responses. The
application was developed to help Swiss German teens prac-
tice English conversation. A prompt is a piece of German text
that is introduced to the learner, while the response is an En-
glish response recorded using an audio capturing device. The
response is supposed to be an English sentence that follows the
German prompt request. Based on data collected from users of
the CALL-SLT tool, Baur et al. [2] proposed the SpokenCALL
shared task1. Given a German prompt and an English response,
the shared task is to accept linguistically correct and meaning-
ful responses and to reject incorrect responses. The shared task
consists of both a text track and a speech track. The speech track
uses the recorded response as an input, and based on this input,
a system submitted to this track should accept or reject the re-
sponse. In contrast, the text track uses text responses generated

1https://regulus.unige.ch/spokencallsharedtask/

from two state of the art speech recognition systems (Kaldi [3]
and Nuance [4]). Systems participating in the text track can use
the output text of either of these speech recognition systems,
rather than the originally recorded audio, to accept or reject the
response. In this paper we target the text track, where we are
supposed to give accept or reject feedback for a text response,
based on meaning and language quality.

This paper describes three systems we developed and in-
corporated in this shared task, where our best system achieved
the 3rd position in the final evaluation. Our classifiers were de-
veloped by using different machine learning techniques to com-
bine syntactic and semantic features extracted from learner re-
sponses. The paper is organized as follows: Section 2 presents
related work, Section 3 describes the dataset, Section 4 de-
tails our proposed approaches, Section 5 summarizes the exper-
iments, Section 6 presents the results, and Section 7 concludes
and suggests future work.

2. Related work
Accepting or rejecting a targeted response based on both lan-
guage quality and meaning can be seen as a hybrid of two tasks:
1- error detection. 2- similarity measurement. It is not enough
to just detect grammatical errors, since a meaningless sentence
can be correct grammatically. Conversely, detecting similarity
is also not enough, as some tasks require grammatically sound
responses. We thus tackle the shared task by combining prior
work in error detection and similarity measurement.

Multiple shared tasks have previously targeted the problem
of error detection and correction (CONLL 2013 [5], CONLL
2014 [6], HOO 2011 [7] and HOO 2012 [8]). Sometimes the
task is to only correct errors, while other times the task is di-
vided into error detection and correction. A variety of ap-
proaches have been based on classification. Cahill et al. [9] used
a classification model based on logistic regression to develop
a system for error detection. Cahill et al. mined Wikipedia
revisions to produce a large error-annotated training corpus,
and evaluated the system using other publicly available datasets
(HOO 2011 [7] and FCE [10]). Another system that used a
classification-based approach for error detection and correction
is the system proposed by Rozovskaya et al. [11, 12]. On
the other hand, Gamon [13] argued that using language model-
ing outperforms classification-based models, and also proposed
combining language modeling and classification for error de-
tection and correction. As the task we are dealing with targets
English learners, responses are expected to be very basic short
English sentences and very limited in vocabulary. Due to these
aspects, we decided to follow Gamon and adopt language mod-
eling as the core approach for our error detection. Moreover,
we adopted Cahill et al.’s idea of using external error resources.

With respect to detecting text similarity, different ap-
proaches have also been introduced. Šarić et al. [14] used a



combination of unigram, bigram and trigram overlap features in
addition to other corpus and knowledge-based similarity mea-
sures to detect similarity. Magooda et al. [15] combined dif-
ferent word embedding models to measure sentence similarity,
where sentences are represented using summation of word vec-
tors and similarity is measured using cosine. In our work we
use machine learning to combine features based on this prior
work in measuring similarity with features based on the error
detection work described above.

3. Dataset
The dataset we used during this work is the dataset introduced
by the shared task competition committee, which consists of
annotated training data as well as test data in which the anno-
tations were hidden until the end of the competition. Table 1
shows the number of samples in the training and test sets. Three
native English speakers independently annotated the data along
two dimensions (Language and Meaning). Table 2 and Table
3 show the annotation distribution over both training and test-
ing data, respectively. Each training sample in the training set
consists of the following:

• Prompt.

• Response “result of speech recognition”.

• Human transcript of audio response.

• Language Annotation.

• Meaning Annotation.

While a transcript is provided for the training samples, no tran-
script is provided for the test samples. Without transcription and
with errors due to speech recognition, the text track was quite
challenging. Another useful resource that was publicly avail-
able for use was a sample XML grammar file that has a set of
possible correct responses for each of the prompts in either the
training or test sets.

Table 1: Training and testing samples

Data Number of samples

Training 5222
Test 996

Table 2: Training set annotations

Language

Meaning

Correct Incorrect
Correct 3880 802
Incorrect 0 540

Table 3: Test set annotations

Language

Meaning

Correct Incorrect
Correct 716 159
Incorrect 0 121

4. Proposed approaches
This section details the three systems we submitted to the com-
petition. The systems are based mainly on machine learning
techniques and combine a set of syntactic and semantic fea-
tures. To introduce the systems in detail, we will divide our
description into 3 parts: feature extraction, feature selection,
and classification.

4.1. Feature extraction

During our system development we extracted a wide set of fea-
tures, which can be divided into two general types:

• Features used to detect inconsistency on the language
level (spelling mistakes, part of speech score, language
modeling).

• Features used to detect inconsistency on the meaning
level (syntactic relatedness, semantic relatedness).

The intuition behind this separation is mimicking the annotation
process. Since samples are annotated based on two criteria, we
decided to adopt the same criteria for feature engineering. We
employed both the idea of using language modeling [13] com-
bined with the idea of using external error resources [9]. We
also adopted some features to detect similarity within sentences
[14, 15].

4.1.1. Language-related features

To detect inconsistency on the language level, we use three
types of features to differentiate between sound English re-
sponses, and responses that have grammatical mistakes or that
make no sense regardless of the response’s relatedness to the
prompt.

Spelling mistakes (F1). To capture the presence of spelling
mistakes, we use a binary feature (which we will refer to as F1)
indicating if any spelling mistakes exist in the response or not.
To check for spelling mistakes we use the NLTK English spell
checker [16].

Part of speech score (F2). A score is given to each sen-
tence by a part of speech (POS) tagger and represents how likely
the sentence is to be a real sentence. For the tagging process we
use the Stanford part of speech tagger [17].

Language modeling (F3-F10). To extract these features
we use multiple language models (LMs). All language models
are 5-gram language models trained using the SRILM language
modeling toolkit [18]. Since the amount of data we have for
this task is not much, it was easy to go beyond trigrams with-
out any noticeable time complexity. We tried multiple values
of n for training n-gram models and decided to use 5-grams as
they achieved the lowest perplexity over the training data. We
also found that going beyond 5-grams didn’t yield any improve-
ment in perplexity. We used interpolation and the unknown
tag (“unk”) to deal with out of vocabulary and sparsity issues.
While it is not a best practice to evaluate models using training
data, we did that due to the lack of data. To distinguish between
linguistically sound and unsound responses at an abstract level,
we then trained two types of 5-gram language models:

• Models trained using correct English sentences

• Models trained using incorrect English sentences

The intuition behind using these two different types of lan-
guage models is that incorrect sentences are more likely to get
higher probability from language models trained on incorrect



sentences compared to language models trained on correct sen-
tences. The same is plausible for correct sentences, which are
more likely to get higher probability from language models
trained using correct sentences.

Specifically, within each of these two types, we train four
different language models. Two of the four models are trained
using words, while the other two are trained using part of speech
tagged versions of the same data. For the language models
based on correct sentences, word and POS models are trained
from the following two sources of data:

• F3, F4: Speaker responses “Transcripts” annotated as
correct on the language level.

• F5, F6: All sample responses from the grammar XML.
Since these are proposed answers, they are guaranteed to
be correct English sentences.

For the language models based on incorrect sentences, the word
and POS models are instead trained on the following two data
sources:

• F7, F8: Speaker responses “Transcripts” annotated as in-
correct on the language level.

• F9, F10: Incorrect sentences collected from two previ-
ous error detection and correction shared tasks (HOO
2011 [7] and CONLL 2014 [6]). These shared tasks
provided datasets of English sentences with linguistic er-
rors, where participants were asked to detect and propose
a correction for these errors. These prior shared tasks
yielded a total of 2029 different sentences.

4.1.2. Meaning-related features

The other set of features we use are meant to capture relatedness
between the prompt and the speaker response. These features
aim to detect both syntactic and semantic relatedness and are
extracted using word matching, language modeling, and word
embeddings.

Syntactic relatedness (F11-F12). To capture syntactic re-
latedness between prompt and speaker response, we use the
sample responses for each prompt that were provided in the
grammar XML file and employ the concepts of n-gram match-
ing and language modeling. We decided to use language mod-
els trained per prompt, as using such language models should
assign high probabilities to similar responses. Moreover, we
decided to count the number of n-gram matches as this should
also capture a degree of relatedness. In more detail, the syntac-
tic relatedness features we use are as follows;

• F11: Number of matching unigrams, bigrams and tri-
grams. For a prompt-response pair, we calculate the
number of matching unigrams bigrams and trigrams be-
tween a speaker response and all the sample responses
from the grammar XML file for the prompt of concern.
The numbers are then averaged over the number of sam-
ple responses.

• F12: Language modeling. For a prompt-response pair,
we train a language model using the sample responses
from the grammar XML file for the prompt of concern.
Once we have a language model trained using the sample
responses, we can calculate the probability of the speaker
response. The trained language model is expected to
assign high probability to responses that are syntacticly
similar to the sample responses.

Semantic relatedness (F13-F16). To capture semantic relat-
edness, we decided to use the concept of word embeddings.

Word embedding is based on representing words with vectors
in high dimensional space, where each dimension of the gen-
erated space can hold a semantic or a syntactic feature. This
high dimensionality representation of words can be utilized to
measure semantic relatedness between words or sentences, us-
ing a distance measure like cosine. Two very popular models of
word embeddings (skip-gram, continuous bag of words) were
developed by Mikolov et al. in [19]. These two models have a
structure similar to neural networks while using log linear clas-
sifiers as the core of the model. The parameters of the trained
log linear classifiers are used as word embeddings. Continu-
ous bag of words and skip-gram models are trained differently.
The first is trained to predict word given context while the sec-
ond is trained the other way around to predict context given a
pivot word. For a prompt-response pair, we train multiple word
embedding models using both skip-gram and continuous bag of
words (CBOW) algorithms [20, 19]. We train the models per
prompt, and for each prompt we train multiple models over the
sample responses for the prompt of concern. In particular, for
each prompt we train the following models:

• F13: Skip-gram model (50 dimensions and negative
sampling [20])

• F14: Skip-gram model (30 dimensions and negative
sampling)

• F15: Continuous bag of words model (50 dimensions
and negative sampling)

• F16: Continuous bag of words model (30 dimensions
and negative sampling)

We decided to train our models instead of using any of the al-
ready trained models like the Google News skip-gram model
[19]. Since the data we have uses only basic English vocabulary
and short simple sentences, tailoring models only on these data
can capture relatedness between words that are specific for this
data, which may not be found in news data like the ones used for
the Google News model. As the data we have is not much, we
trained models with a small number of dimensions (30 and 50
dimensions) compared to the one trained on Google News (300
dimensions). To use each of the word embedding models, co-
sine similarity is measured between the speaker response vector
representation and the vector representation of each of the sam-
ple responses. We used cosine to be consistent with the word
embeddings training objective. Since these word embeddings
are trained to maximize the cosine similarity between classifi-
cation output and expected word, we think it is better to follow
the same training objective. Additionally, following Mikolov
et al. [20] in employing the additive compositionality property
of the word embeddings, a sentence vector is formed using the
summation of the constructing words’ vectors. The final cosine
similarity is the maximum of all the cosine values calculated
between response and sample responses. In this context, we
tried using average cosine, maximum and minimum; selecting
maximum cosine got the best results during validation.

Sentence ratio (F17). This final feature is neither semantic
or syntactic based, this feature is used to make sure responses
have a reasonable length. Sentence ratio, is the ratio between
the length of speaker response, and the average length of sample
responses assigned to that specific prompt. As the prompts are
asking for very basic English responses, it is safe to assume that
responses are expected to have almost the same length. This
feature can capture responses that are not reasonable, responses
that are too short or too long.



4.2. Feature selection

After extracting the features we discussed in the previous sec-
tion, we performed feature selection using PCA to select a sub-
set of the features that can achieve the best accuracy. To select
features using PCA, we generated two versions of the features,
one version with the raw values, the other with a normalized
version of the values to be between [-1, 1]. Tables 4 and 5 show
the set of features selected using raw and normalized values,
respectively.

Table 4: Selected features using PCA with “raw values” (fea-
ture set 1)

Features

Language

Part of speech sentence score (F2)
LM trained on correct responses (F3)
LM trained on incorrect responses (F7)
LM trained on incorrect sentences (F9)
LM trained on incorrect sentences POS (F10)

Meaning
LM trained on sample responses (F12)
Skip-gram 50 dimensions (F13)
Sentence ratio (F17)

Table 5: Selected features using PCA with “normalized values”
(feature set 2)

Features

Language LM trained on correct responses (F3)
LM trained on incorrect responses (F7)

Meaning

Unigram, bigram, trigram matches (F11)
Skip-gram 30 dimensions (F14)
CBOW 50 dimensions (F15)
CBOW 30 dimensions (F16)

4.3. Classification

For the classification, we tried two different widely used ma-
chine learning classifiers:

• K-nearest neighbor (KNN) [21].

• Support vector machines (SVM) [22].

We trained SVM models using the normalized set of features.
SVM works best with normalized data because it avoids prior
whitening for the dimensions, which in turn tries to avoid di-
mension domination. On the other hand we trained KNN mod-
els using the raw set of features. KNN depends on pure Eu-
clidean distance between samples, so using raw values can pro-
duce a wider spectrum of distances between samples, while nor-
malizing can end up having very small differences in distances
due to the tightened values allowed. That is why we decided to
use the raw feature values with KNN and normalized versions
with SVM. The next section will describe the experiments and
tuning carried out to use both classifiers.

5. Experiments
To select the best performing classifier and hyper parameters,
we performed multiple experiments to train and validate both
classifiers. To train and tune both classifiers, we used 10 fold

cross validation over the training data provided by the shared
task. However for the 10 folds we used 3 different data splitting
paradigms.

• Fixed data splitting, where data is split into 10 parts
based on the order of training samples in the file.

• Random data splitting, where data is randomly split into
10 parts. The accuracy of random splitting is calculated
by averaging the score of performing 10 iterations, of
random 10 fold cross validation.

• Per prompt data splitting, where we split the responses
for each prompt into 10 parts. In this paradigm we are
making sure that responses for the same prompt appear
in training and validation folds.

For KNN we tuned the K (number of neighbors) value, and for
SVM we varied the cost, gamma and the kernel. We selected
the parameters that maximized the D-scores (equation 1 & 2)
over the 3 splitting paradigms.

D =
CR(FR + CA)

FR(CR + FA)
(1)

FA = PFA + k.GFA (2)

where:

• CA = Correct Accept, the student’s answer is correct, the
system accepts.

• CR = Correct Reject, the student’s answer is incorrect,
the system rejects.

• PFA = Plain False Accept, the student’s answer is correct
in meaning but incorrect English, the system accepts.

• GFA = Gross False Accept, the student’s answer is in-
correct in meaning, the system accepts.

• FR = False Reject, the student’s answer is correct, the
system rejects.

• k = A weighting factor, default value is 3

Table 6: Accuracy over training data using 10 fold cross vali-
dation

Features D-Score
Fixed Random Prompt

Set 1 : Raw KNN 23.034 18.758 17.981

Set 2 : Normalized SVM 13.101 18.206 16.491

Combined : Raw KNN 26.354 18.683 17.707

Baseline 2.06

Table 6 summarizes the results obtained by using 10 fold
validation on the training data. Raw Features are the features se-
lected by PCA using the raw feature values, while normalized
are the features selected using normalized values. The com-
bined features are the feature set selected from normalized val-
ues and the feature set selected from raw values, but all values
then kept without normalization. We submitted three systems
to the shared task competition, where each system corresponds
to one of the entries in Table 6. First entry corresponds to us-
ing KNN as a classifier with features set 1 ”raw values”, entry



2 corresponds to using SVM as a classifier with features set 2
”normalized values”, while finally entry 3 corresponds to using
KNN as classifier with features set 1 and set 2 combined with-
out normalization ”raw values”. The next section will present
the results achieved for each of these submissions over the test
set.

6. Results

Out of the submitted 20 entries made by 9 teams, one of the en-
tries we submitted achieved the 3rd position. Table 7 shows the
results of the highest 10 submissions, sorted by D-score over
the test data. The results are anonymous, however our submis-
sions are underlined in the table. Besides showing the scores,
the table shows which speech recognition system output each
submission used for training and testing, where custom means
that the team used their own developed speech recognition sys-
tem and participated in the speech track. Thus, beside achieving
3rd in both tracks combined, we achieved 1st place in the text
track.

Note that in contrast to the results we achieved on the train-
ing data, our submissions came in reverse order on the test data.
That is, the system that got the lowest score on training data (Set
2 - Normalized - SVM) got the highest on test and vice versa,
the system that got the highest score on training data (Combined
- Raw - KNN) got the lowest on test data. One thing that comes
to mind here is that KNN classifiers are more liable to overfit
than SVM ones. Another finding that actually agrees with our
intuition is as follows. Since D-score penalizes meaning errors
more than language ones, we thought that using more features
to capture meaning errors would get us higher results. This in-
tuition actually proved to be right on test data, but didn’t prove
to be correct on training data, which in turn can weight the scale
towards hypothesizing there was an overfitting issue for KNN
classifiers.

It is also worth mentioning that all the systems that came
in the first 10 positions which aren’t using their own devel-
oped speech recognition systems are using the Kaldi system,
although Nuance’s baseline achieves a marginally higher score
than Kaldi’s baseline. Due to this contradiction, after the com-
petition we tried our 3 set of features in further runs, once using
Nuance system output, and the other time using output of the
speech recognition system developed by the 1st place team. As
the 1st team only released the output of their speech recogni-
tion system of test data, we are not able to train a new model
using their speech recognition system output and instead used
the same Kaldi model we trained. In addition, we trained a new
model using the Nuance system output. Using these two mod-
els we evaluated two versions of the test data, one using the
Nuance version of the test data, the other using the 1st team’s
version. Table 8 summarizes the results. Comparing to Table
7 we see that using the Nuance system instead of Kaldi really
got us lower scores, which is somehow consistent with scores
from other teams. We also didn’t get any score enhancement
by using the 1st team’s version of test data. This degraded per-
formance is somehow expected, because we are training and
testing using two different speech recognition systems. This
conclusion agrees with our intuition as we know that training
using a specific system tailors the model to avoid the errors the
system makes, so testing using another system with a different
set of errors will result in degraded performance as in our case.

Table 7: Best 10 submissions, sorted by accuracy over test data

Rank Speech system D-score

1 Custom 4.766
2 Custom 4.710
Baseline Perfect Rec 4.512
3 (Set 2 : SVM : Norm.) Kaldi 4.468
4 Custom 4.371
5 Kaldi 4.353
6 Kaldi 4.273
7 Kaldi 3.998
8 Kaldi 3.678
9 Kaldi 3.352
10 (Set 1 : KNN : Raw) Kaldi 3.335
BaselineNuance Nuance 2.358
BaselineKaldi Kaldi 1.694

Table 8: Accuracy of training and testing using systems other
than Kaldi

Training Test Features D-score

Kaldi

1st Team Set 1: KNN 0.831

1st Team Set 2: SVM 0.923

1st Team Combined: KNN 0.807

Nuance Set 1: KNN 3.047

Nuance Set 2: SVM 2.219

Nuance Combined: KNN 2.301

Nuance

1st Team Set 1: KNN 0.901

1st Team Set 2: SVM 0.751

1st Team Combined: KNN 0.889

Nuance Set 1: KNN 2.281

Nuance Set 2: SVM 2.644

Nuance Combined: KNN 2.594

7. Conclusions and future work
In this paper we presented a system that uses natural language
processing techniques over the output of a speech recognition
system in order to provide feedback on spoken responses to a
spoken CALL system. Our approach to system development
used machine learning to combine syntactic and semantic fea-
tures based primarily on language modeling and word embed-
dings, which makes it easy to develop. We provided three
different configurations of the system with three different set
of features; these systems were also part of the SpokenCALL
shared task and our best configuration achieved the 3rd position
in both tracks and 1st position in text track only. This result sug-
gests that with a combination of simple and easy to develop fea-
tures and a basic machine learning classification model, promis-



ing performance can be achieved. Using the data released by
the shared task after the competition, we further evaluated our
method by training using the output of both Kaldi and Nuance
speech recognition systems. However, we hope that the first
place team will make the training version of their speech recog-
nition system available for use by others. We would like to try
our same pipeline using this data as we think that better results
can be achieved by enhancing the speech recognition accuracy.
We would also like to further investigate the interplay of speech
recognition output, natural language processing features, and
machine learning algorithms.

8. Acknowledgements
We would like to thank A.Mahgoub and M.Zahran for their
helpful feedback.

9. References
[1] E. Rayner, N. Tsourakis, C. Baur, P. Bouillon, and J. Gerlach,

“Call-slt: A spoken call system based on grammar and speech
recognition,” Linguistic Issues in Language Technology, vol. 10,
no. 2, 2014.

[2] C. Baur, J. Gerlach, E. Rayner, M. Russell, and H. Strik, “A shared
task for spoken call?” 2016.

[3] D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek,
N. Goel, M. Hannemann, P. Motlicek, Y. Qian, P. Schwarz et al.,
“The kaldi speech recognition toolkit,” in IEEE 2011 workshop
on automatic speech recognition and understanding, no. EPFL-
CONF-192584. IEEE Signal Processing Society, 2011.

[4] “https://developer.nuance.com/public/index.php?task=home.”

[5] H. T. Ng, S. M. Wu, Y. Wu, C. Hadiwinoto, and J. Tetreault, “The
conll-2013 shared task on grammatical error correction.”

[6] H. T. Ng, S. M. Wu, T. Briscoe, C. Hadiwinoto, R. H. Susanto,
and C. Bryant, “The conll-2014 shared task on grammatical error
correction.” in CoNLL Shared Task, 2014, pp. 1–14.

[7] R. Dale and A. Kilgarriff, “Helping our own: The hoo 2011 pilot
shared task,” in Proceedings of the 13th European Workshop on
Natural Language Generation. Association for Computational
Linguistics, 2011, pp. 242–249.

[8] R. Dale, I. Anisimoff, and G. Narroway, “Hoo 2012: A report
on the preposition and determiner error correction shared task,”
in Proceedings of the Seventh Workshop on Building Educational
Applications Using NLP. Association for Computational Lin-
guistics, 2012, pp. 54–62.

[9] A. Cahill, N. Madnani, J. R. Tetreault, and D. Napolitano, “Ro-
bust systems for preposition error correction using Wikipedia re-
visions.” in HLT-NAACL. Citeseer, 2013, pp. 507–517.

[10] H. Yannakoudakis, T. Briscoe, and B. Medlock, “A new dataset
and method for automatically grading esol texts,” in Proceedings
of the 49th Annual Meeting of the Association for Computational
Linguistics: Human Language Technologies-Volume 1. Associ-
ation for Computational Linguistics, 2011, pp. 180–189.

[11] A. Rozovskaya, K. W. Chang, M. Sammons, D. Roth, and
N. Habash, “The illinois-columbia system in the conll-2014
shared task.” in CoNLL Shared Task, 2014, pp. 34–42.

[12] A. Rozovskaya, K. W. Chang, M. Sammons, and D. Roth,
“The university of illinois system in the conll-2013 shared task,”
CoNLL-2013, vol. 51, p. 13, 2013.

[13] M. Gamon, “Using mostly native data to correct errors in learners’
writing: a meta-classifier approach,” in Human Language Tech-
nologies: The 2010 Annual Conference of the North American
Chapter of the Association for Computational Linguistics. As-
sociation for Computational Linguistics, 2010, pp. 163–171.

[14] F. Šarić, G. Glavaš, M. Karan, J. Šnajder, and B. Dalbelo Bašić,
“Takelab: Systems for measuring semantic text similarity,” in
Proceedings of the Sixth International Workshop on Semantic
Evaluation (SemEval 2012). Montréal, Canada: Association
for Computational Linguistics, 7-8 June 2012, pp. 441–448.
[Online]. Available: http://www.aclweb.org/anthology/S12-1060

[15] A. E. Magooda, M. A. Zahran, M. Rashwan, H. M. Raafat, and
M. B. Fayek, “Vector based techniques for short answer grading.”
in FLAIRS Conference, 2016, pp. 238–243.

[16] S. Bird, E. Klein, and E. Loper, Natural language processing
with Python: analyzing text with the natural language toolkit. ”
O’Reilly Media, Inc.”, 2009.

[17] K. Toutanova, D. Klein, C. D. Manning, and Y. Singer, “Feature-
rich part-of-speech tagging with a cyclic dependency network,” in
Proceedings of the 2003 Conference of the North American Chap-
ter of the Association for Computational Linguistics on Human
Language Technology-Volume 1. Association for Computational
Linguistics, 2003, pp. 173–180.

[18] A. Stolcke et al., “Srilm-an extensible language modeling toolkit.”
in Interspeech, vol. 2002, 2002, p. 2002.

[19] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient esti-
mation of word representations in vector space,” arXiv preprint
arXiv:1301.3781, 2013.

[20] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their com-
positionality,” in Advances in neural information processing sys-
tems, 2013, pp. 3111–3119.

[21] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg et al.,
“Scikit-learn: Machine learning in python,” Journal of Machine
Learning Research, vol. 12, no. Oct, pp. 2825–2830, 2011.

[22] C. C. Chang and C. J. Lin, “LIBSVM: A library for support
vector machines,” ACM Transactions on Intelligent Systems and
Technology, vol. 2, pp. 27:1–27:27, 2011, software available at
http://www.csie.ntu.edu.tw/ cjlin/libsvm.


